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Abstract Measurements obtained at ground-based observatories are crucial to understanding the
geomagnetic field and its secular variation (SV). However, current data processing methods rely on
piecemeal closed-source codes or are performed on an ad hoc basis, hampering efforts to reproduce data
sets underlying published results. We present MagPySV, an open-source Python package designed to
provide a consistent and automated means of generating high-resolution SV data sets from hourly means
distributed by the Edinburgh World Data Centre. It applies corrections for documented baseline changes,
and optionally, data may be excluded using the ap index, which removes effects from documented high
solar activity periods such as geomagnetic storms. Robust statistics are used to identify and remove outliers.
Developing existing denoising methods, we use principal component analysis of the covariance matrix of
residuals between observed SV and that predicted by a global field model to remove a proxy for external
field contamination from observations. This method creates a single covariance matrix for all observatories
of interest combined and applies the denoising to all locations simultaneously, resulting in cleaner time
series of the internally generated SV. In our case studies, we present cleaned data in two geographic regions:
monthly first differences are used to investigate geomagnetic jerk morphology in Europe, an area previously
well-studied at lower resolution, and annual differences are investigated for northern high latitude regions,
which are often neglected due to their high noise content. MagPySV may be run on the command line or
within an interactive Jupyter notebook; two notebooks reproducing the case studies are supplied.

1. Introduction

These external fields also act to induce secondary fields in the Earth, which vary in time with the induc-
ing field. A major challenge in using geomagnetic observations is the difficulty in separating variations in
the core-generated field from those of external sources at overlapping time intervals, which often obscure
fine-scale details. Observatory annual means (OAMs) are widely used to study time changes of the geo-
magnetic field (secular variation [SV]) and their underlying physical processes in the outer core, in which
motions of molten iron generate the field through dynamo action. However, their temporal resolution is
not sufficient for studies of rapid changes in the core-generated SV, such as geomagnetic jerks (see Man-
dea et al., 2010, for a review of this topic). Observatory monthly means are better suited for studying rapid
core dynamics but are highly sensitive to measurement errors due to their high temporal resolution. Both
means suffer from significant external magnetic field contamination (noise, in the context of internal field stud-
ies). The observed geomagnetic field is a combination of various sources, both internal and external to the
Earth. The dynamo-generated field (time-varying) and the crustal field arising from local geology (assumed
steady on observation time scales) are the main internal field sources. Examples of external magnetic field
sources include electric current systems in the ionosphere and magnetosphere and their interactions with the
solar wind. In this paper, we present MagPySV, an open-source Python package designed to compile, process,
and denoise observatory data, resulting high-resolution SV series with documented baseline changes outliers
and external contamination removed. A method for denoising observatory means using principal compo-
nent analysis (PCA), based on work by Wardinski and Holme (2011), Brown et al. (2013), and Feng et al. (2018),
is presented in this work and implemented in the software. This denoising method permits the use of higher
temporal resolution data than have previously been used and allows better characterization of noise in differ-
ent geographic regions than prior studies. We illustrate this point with two case studies in this paper: one for
European observatories and a second for northern high latitude observatories. Two example Jupyter note-
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books are provided with MagPySV, which allows the reader to reproduce the analyses and figures presented
in this paper.

1.1. Data Holdings
The primary data holding of geomagnetic observatory measurements is the Geomagnetic Data Master Cata-
logue of the World Data Centre (WDC) for Geomagnetism in Edinburgh (hereafter WDCE), a regular member of
the International Council for Science World Data System. This is in essence a repository to ensure the long-term
availability of data collected at observatories (since around 1840) and is not a processing facility, although
some quality control (QC) is performed to correct or report anomalies. Data are reported by standard as 1-min
and 1-hr means.

The International Real-Time Magnetic Observatory Network (INTERMAGNET) is a body that promotes stan-
dards in geomagnetic observatory operation including QC and data delivery time, with a focus on real-time
collection of data through five geographically distributed Geomagnetic Information Nodes. Since 2013,
INTERMAGNET classifies data into four categories according to their quality (listed from the lowest to high-
est): variation, provisional, quasi-definitive (QD), and definitive, at 1-min and 1-s resolution. Of these, QD and
definitive data are most suitable for research purposes, with QD data being delivered within 3 months of
acquisition, corrected to provisional baselines, and very close to the final definitive values determined on a
longer time scale (Clarke et al., 2013; Peltier & Chulliat, 2010). Data from observatories that meet the standards
set by INTERMAGNET are hosted for public online access.

All definitive data from INTERMAGNET observatories are deposited in WDCE, as well as definitive data from
unaffiliated observatories. Various subsets of data can also be accessed through WDCs Kyoto, Mumbai,
and Moscow.

Further to these raw data holdings, derived products are produced and distributed by various insti-
tutions. The most relevant here are the OAM values at WDCE distributed by British Geological Sur-
vey (BGS; http://www.geomag.bgs.ac.uk/data_service/data/annual_means.shtml), the monthly mean values
produced by Bureau Central de Magnétisme Terrestre (BCMT; Chulliat & Telali, 2007; ftp://ftp.bcmt.fr/),
and the AUX_OBS data sets produced by BGS to aid the European Space Agency Swarm mission
(ftp://ftp.nerc-murchison.ac.uk/geomag/Swarm/AUX_OBS/).

The OAM files also contain information regarding all documented baseline discontinuities at each obser-
vatory; the discontinuity values are also given on the OAM pages of the BGS website. The BCMT supplies
annual-, monthly-, daily-, hourly-, and minute-mean and second cadence data for the BCMT observatory net-
work. The monthly-mean database is derived for all INTERMAGNET observatories from WDC hourly-mean
holdings with a QC and calculation procedure described by Chulliat and Telali (2007). No denoising meth-
ods to remove external noise contamination were implemented in that work, other than averaging the raw
data over 1 month.

The AUX_OBS hourly data set (called AUX_OBS_2) originally covered the era of near-continuous satellite
observation from 1997 to present, updated every 3 months, to aid global field modeling efforts. Both QD and
definitive standard data are collated on a three monthly basis for as many observatories as possible and a
thorough QC procedure applied, as described by Macmillan and Olsen (2013). This procedure includes the
application of all known baseline discontinuities and the splitting of records where unknown discontinuities
are identified. Since 2017, the hourly AUX_OBS_2 set has been extended back to 1957 and augmented by
daily updates minute mean AUX_OBSM2 (from 1997) and 1-s AUX_OBSS2 (from 2013) sets. Note that in con-
trast to the WDCE data, which are given in the geodetic frame, all AUX_OBS data are given in the spherical
frame. Note also that they are given in a different file format.

Initially, we here choose to use the definitive hourly mean data, held at WDCE, in order to access the widest
ranging historical data set at a cadence suited to internal field studies and the largest geographic spread of
observatories. Future updates will look to extend access to other data holdings and to implement access to
other cadence data.

2. Method

In order to go from raw magnetic field data to denoised SV series suitable for studying rapid observed fea-
tures and core dynamics, several processing steps are required. Figure 1 shows the workflow implemented by
MagPySV; each step is described in the following text.
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Figure 1. Flowchart showing the basic workflow for processing and denoising raw World Data Centre for
Geomagnetism in Edinburgh geomagnetic hourly data. Orange boxes represent processes in the workflow, green
diamonds represent decisions made by the user ,and blue trapezoids indicate the output from the code at various
stages of the workflow. The numbers in the process boxes correspond to the sections of this paper in which the
processes are described. BGS = British Geological Survey; SV = secular variation; PCA = principal component analysis.
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2.1. Obtaining WDC Data
Geomagnetic data hosted by WDCE are accessed through a utility of the BGS Geomagnetism Data Portal (GDP)
to the WDC master catalog (http://wdc.bgs.ac.uk/dataportal/). The GDP provides an interactive web appli-
cation, with a graphical user interface for searching, visualization, and downloads, as well as programmatic
access to the supporting web service via RESTful API. This allows a user to directly send an HTTP “get” request
to retrieve an HTML form and then an HTTP “post” request to populate the form with the details of data files
requested. This form entry results in a returned ZIP archive containing the data set requested, which is then
unpacked and the individual files written to disk for the user.

In order to use this functionality of the web service, MagPySV depends on a Python library developed in tan-
dem at BGS, which is installed as part of the MagPySV installation. This library provides the ability to request
a data download, through a single Python function call, of minute or hour cadence data for a user-specified
list of observatories and a user-specified date range. Further details of this code are given in section 5.

2.2. Initial Data Processing
All raw hourly data at WDCE are stored in a specific file format called WDC format, a detailed description of
which may be found at http://www.wdc.bgs.ac.uk/catalog/format.html. Each file contains data for a single
observatory in a single year, and all field components are given within a single file. The first average value in
the file represents half past midnight in coordinated universal time (00:30:00 UTC) of the specified day, and
the final hourly value is for 23:30:00 UTC of the day. The final value in the file, representing the daily average,
is neglected as these are not calculated by the BGS/WDC but by individual observatories, and some values
may be unreliable (S. Macmillan, personal communication, May 29, 2017). Magnetic field values (declina-
tion/inclination values) are converted to nanoteslas (nT; degrees) using the tabular base and values. Magnetic
declination (D) and the horizontal field component (H) are converted into the geodetic X (north) and Y (east)
field components using the relations

X = H cos D, Y = H sin D. (1)

The raw data files are processed and placed into a Pandas dataframe (McKinney, 2010) indexed by datetime
objects representing each hourly average and containing columns for the X , Y , and Z magnetic field compo-
nents. Missing values, indicated as 9999 in the WDC files, are represented by Not a Number (NaN) values in
the dataframe.

2.3. Correction of Baseline Discontinuities
Discontinuities in an observatory baseline may appear in the data due to, for example, changes to instru-
mentation or moving an instrument or site. The BGS holds a list of all reported baseline discontinuities for
each observatory; these are included within the OAM pages on the BGS website. We have collated these doc-
umented baseline changes up to the current day into a single file containing the observatory name, event
year, and the X , Y , and Z discontinuity values and included the current version in the Python package. The
correction is applied by subtracting the given values from all preceding data. The WDC relies upon individual
observatories to QC the data, keeps detailed records of any disturbance to the baseline, and communi-
cates their dates and magnitudes. The quality and quantity of the such information vary between different
observatories and through time, and there remain undocumented discontinuities in the data. Where such
undocumented features are identified in the data, their times and magnitudes can be added to the file for
automated correction.

2.4. Outlier Detection
Outliers (spikes) remain in the data for several reasons, such as transient external activity that is not captured
by a magnetic field index, instrument errors, or the temporary presence of magnetic material near an instru-
ment. The latter two cases should be identified and removed from the data as they do not relate to any physical
processes of the magnetic field, but all are considered noise when the internal field is the primary interest.
Identifying outliers in time series data is a large ongoing topic of research in many different fields, and vari-
ous statistical methods have been proposed, see Barnett and Lewis (1974) and Hodge and Austin (2004) for
comprehensive reviews of this topic. One method that has been applied in various contexts is the median
absolute deviation (MAD) from the median, defined as

MAD = median(|xi − median(x)|), (2)

for a set of observations xi (Hampel, 1974). The MAD is a measure of statistical dispersion and is insensitive
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Figure 2. Hourly X component of magnetic field (MF) at Chambon-la-Forêt,
France (black line), with identified outliers (red triangles).

to the presence of outliers, making it more robust than the widely used
three sigma rule, which consists of determining an interval spanning over
the mean plus or minus three standard deviations, since the mean and
standard deviation are themselves sensitive to outliers. Using the MAD, we
determine the rejection criterion of a value xi as

|xi − median(x)|
MAD

>𝛼, (3)

where 𝛼 is a user-specified threshold. Geomagnetic time series are often
long (several decades) and highly variable within that period. These vari-
ations imply that the median naturally changes over the whole series
length, so we do not think it appropriate to use a single value of this quan-
tity in the above criterion as is typical. We instead use running median
calculations, with a window length specified by the user. Identified outliers
are set to NaN in the dataframe. There is an option to plot the identified
outliers in the time series; Figure 2 shows an example plot of hourly means

for Chambon-la-Forêt (CLF) observatory with a window length of 10 years and a threshold of 10. Given that
many of the identified outliers are negative, it is likely that these are caused by strong geomagnetic storms
as opposed to data errors. Note that in this paper, we define outliers in the statistical sense according to the
MAD criterion, regardless of whether they are due to measurement error or external magnetic field processes.
We recommend removing outliers from hourly field data before resampling to monthly means so as to avoid
biasing entire months of data, though the user may perform outlier removal on field/SV data of any frequency.

2.5. Data Resampling
At this stage, the dataframes contain hourly averages of magnetic field observations in the X , Y , and Z direc-
tions indexed by datetime stamps. Data at this frequency are not generally used for studies of the outer core
and internally generated SV, rather monthly or annual means, although see ,for example, the GRIMM (Lesur et
al., 2015) or BGS model series (Hamilton et al., 2015). The datetime objects allow easy data resampling of the
hourly values at a user-specified frequency. For annual means, the datetime objects of resampled data are set
to the first day of July, the midpoint of the year, while for monthly means, the datetime objects are set to the
15th day of the month. Optionally, the user may exclude data from the averaging calculation based on val-
ues of a planetary magnetic field index. Various magnetic indices are used to identify “quiet” and “disturbed”
periods of data, each based on different measurements and related to the activity of different processes in the
ionosphere and magnetosphere. The quasi-logarithmic 3-hourly Kp index is commonly used for data rejec-
tion (see, e.g., Rangarajan, 1989), providing an indicator for overall global geomagnetic activity from external
sources, and is based on average values of the irregular disturbance levels in the horizontal field components
at 13 selected midlatitude magnetic observatories. Directly related to, and derived from, the Kp index is the
linear ap index, which is also provided on a 3-hourly basis. Low ap values indicate low disturbance levels, while
the highest values indicate geomagnetic storms. Excluding data for which ap is high removes the effects of
documented storms and other documented signals in external fields. Note, however, that the Kp network is
heavily weighted toward Europe and Northern America, and using this index for data selection at magnetic
observatories outside these two regions is often inappropriate. An often used criterion for geomagnetic field
modeling, which uses only quiet data, is ap ≤ 7 (corresponding to Kp ≤ 2∘), which is satisfied for approxi-
mately 50% of all data, though this percentage is lower during years of solar maximum and higher during
years of solar minimum (Hulot et al., 2007). MagPySV uses the definitive ap index provided by GFZ, Potsdam,
at ftp://ftp.gfz-potsdam.de/pub/home/obs/kp-ap/. The index is used to match datetimes and drop magnetic
field data from the dataframe at times where the documented ap is above the user-specified threshold. We
have included two different files containing ap data with the example Jupyter notebooks: one in which the
3-hourly values are repeated so that each hour has its own value and the threshold is applied on an hourly
basis and another in which the daily average of the 3-hourly values (i.e., the Ap index) is set to each hourly value
so that entire days of data are dropped when the threshold is applied. Figure 3 shows the hourly magnetic field
for all data (blue), Ap ≤ 7 (cyan), and ap ≤ 7 (red) at Chambon-la-Forêt, France, which shows fewer spikes and
a general reduction in noise with an ap threshold applied. The largest spikes in the figure correspond to doc-
umented geomagnetic storms; however, not all of these are captured by the index. For example, the March
1989 storm, best seen in the X component, is removed with the applied Ap threshold (entire days removed)
but not the applied ap threshold (only certain hours of the day removed). Since many of the surrounding data
are removed, such large spikes bias the monthly mean and result in large SV outliers.
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Figure 3. Hourly magnetic field at Chambon-la-Forêt, France. The top panel
is the X component, middle panel is Y , and bottom panel is Z.

2.6. SV Calculation
Studies of core dynamics and geomagnetic field behavior require knowl-
edge of SV (time changes of the magnetic field) rather than measurements
of the magnetic field itself. Annual means of field data are commonly used,
with SV calculated as first differences such that the difference between a
given annual mean and the previous annual mean gives the SV at 6 months
between the two samples

𝜕B
𝜕t

(tm−0.5) = B(tm) − B(tm−1), (4)

with sampling rate Δtm= 1 year and where B is the magnetic field and
t is time. However, monthly means are better suited to studies of rapid
geomagnetic phenomena due to their higher temporal resolution. Two
different types of SV are typically calculated from monthly field aver-
ages: annual differences of monthly means (ADMM) and first differences of
monthly means (FDMM). ADMM are calculated as the difference between
one monthly sample and the same month of the previous year to give the
SV 6 months between the two

𝜕B
𝜕t

(tn−6) = B(tn) − B(tn−12), (5)

with sampling rate Δtn = 1 month. For example, differencing means at 15
January 2001 and 15 January 2000 gives the SV at 15 July 2000. FDMM
are calculated as the difference between two successive monthly field
averages

𝜕B
𝜕t

(tn−0.5) = 12[B(tn) − B(tn−1)], (6)

also with sampling rate Δtn = 1 month, and the factor of 12 is included to convert from nanotesla per month
to nanotesla per year. For example, differencing field averages at 15 February 2001 and 15 January 2001 gives
the SV at 1 February 2001. ADMM are more frequently used due to their smoothness compared to FDMM,
which arises because their calculation is effectively a 12-month running average of the monthly means, both
reducing noise and eliminating annual variations. FDMM have higher temporal resolution, but they are much
more sensitive to external contamination and other noise sources, see Figure 4 for a comparison of FDMM and
ADMM for CLF. MagPySV can also calculate SV using monthly averages and other fractions of years if required,
with the user specifying the number of months between successive values (e.g., 12 is used for ADMM and 1
for FDMM).
2.7. External Signal Removal Using PCA
A key step in creating usable SV time series is removing external magnetic signals from the observations
to leave only time variations of the dynamo-generated magnetic field. Various methods have been used to
reduce external signal where possible, such as using only annual means or annual differences of monthly
means (e.g., Gillet et al., 2015), data rejection using magnetic indices such as Kp and ap (e.g., Hamilton et al.,
2015), using nighttime-only data (e.g., Lesur et al., 2015), and removing parameterized models of the external
signals from the observations (e.g., Finlay et al., 2016). Here we extend an external noise removal method
developed by Wardinski and Holme (2011), which uses PCA. The method uses the differences (“residuals”)
between observed SV and that predicted by an observationally constrained internal magnetic field model.
The key premise is that residuals provide information about external signals (noise) that are present in the
data but not the internal model and that PCA of the residuals covariance matrix gives a proxy for the external
noise that is removed from the data. Coherent signals in X , Y , and Z residuals at a single observatory are
described by a 3 × 3 covariance matrix (assumed constant through time), whose eigenvectors are used to
rotate the residuals into directions of most, intermediate, and least noise. The largest eigenvalue corresponds
to the eigendirection with the largest contribution from external noise (the “noisy” direction), and the
smallest eigenvalue corresponds to the eigendirection with the lowest contribution from external noise (the
“clean” direction). The noisy component residuals for ADMM at the 50 observatories investigated by Wardinski
and Holme (2011) are in the north-south plane and have strong zero-lag correlation with the time derivative
(annual first differences) of the Dst index, which characterizes magnetic activity of the symmetric equatorial
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Figure 4. SV at Chambon-la-Forêt, France, calculated as first differences of
monthly means (blue) and annual differences of monthly means (red). The
top panel is the X component, middle panel is Y , and bottom panel is Z. SV
= secular variation.

ring current in the magnetosphere (Sugiura, 1964). The authors used a
proxy for external noise in the following noise removal algorithm

R̂(ti) = R(ti) −
∑N

j R(tj)P(tj)
∑N

j P(tj)2
P(tj), (7)

where R is the noisy component residual, R̂ is the corrected noisy compo-
nent residual, P is the proxy for external signal, and the subscripts i and
j run over all N time samples. This correction is applied only to residuals
in the noisy eigendirection before rotating all residuals back into geo-
graphic X , Y , and Z directions and reforming the SV data (both modeled
and unmodeled parts). This yields SV series with reduced external field
contamination, with signal having been removed from each geographic
component in varying amounts, based on how much it contributed to the
noisy direction. In Europe, the noisy direction is predominantly in the X and
Z directions, due to the geometry of the ring current, which results in the
most significant improvements in these directions after denoising, with lit-
tle change in the Y component. Wardinski and Holme (2011) found that
a stronger correlation is found between the noisy component residuals at
different observatories than to the Dst index, leading them to conclude
that the noisy component residuals are better able to account for external
field variations than the Dst index. This is not surprising as the Dst index is
developed using a network of only four observatories and is designed to

monitor the axisymmetric signature of magnetosphere currents (including predominantly the ring current,
the tail currents, and the magnetopause Chapman-Ferraro current) rather than all external sources. Therefore,
they (and Brown et al., 2013) used the noisy component residual at Niemegk (NGK) observatory, Germany, as
the proxy signal in equation (7). NGK was chosen due to having a long unbroken time series that is well docu-
mented, and no other observatory could improve on the overall results in that study (NGK itself was corrected
by the noisy residual at Chambon-la-Forêt observatory, France).

The current work extends this method by considering several observatories simultaneously rather than
denoising each individually, though MagPySV performs the original method if only one observatory is spec-
ified. This was used to benchmark the current code. Residuals for all observatories of interest (specified by
a list of three-digit International Association of Geomagnetism and Aeronomy observatory codes, IAGA) are
collated into a single dataframe, whose covariance matrix is of size 3n × 3n for n observatories. The eigendi-
rection corresponding to the largest eigenvalue is used as a proxy for the unmodeled external field variations
(i.e., noise), which contains contributions from the X , Y , and Z directions at all n observatories considered.
Depending on the eigenvalue spectrum, the user may choose to use several noisy directions as the proxy sig-
nal. If m eigendirections are used, corresponding to the m largest eigenvalues, the projected residuals in all
m directions are summed and used as P in equation (7). Considering several observatories at once permits
easy characterization of external signal at groups of nearby observatories, allowing the user to see patterns in
the noise. MagPySV outputs figures of the eigenvalue spectrum, the contribution of the geographic compo-
nents at each observatory to the overall noisy direction, and comparisons of the external signal proxy to the
time changes and discrete Fourier transforms of the Dst, ap, and auroral electrojet (AE) indices, the latter of
which characterizes the magnetic signature of the eastward and westward auroral electrojets in the Northern
Hemisphere (Davis & Sugiura, 1966). Two applications of this method are presented in the next section, one
for Europe and another for northern high latitude observatories.

2.7.1. Internal Magnetic Field Models
Several geomagnetic field models are available, each constrained using different data sets that may have
been processed in different ways and spanning different time periods. Popular model series include CHAOS
(e.g., Finlay et al., 2016; Olsen et al., 2006), gufm (Jackson et al., 2000), COV-OBS (Gillet et al., 2013, 2015),
GRIMM (Lesur et al., 2008, 2010, 2015), C3FM (Wardinski & Holme, 2006), and Comprehensive Model (Sabaka
et al., 2002, 2015). Many core studies focus from 1957 (the International Geophysical Year) onward due to
the opening of many geomagnetic observatories and the installation of new instrumentation that pro-
vides higher quality measurements. MagPySV uses the COV-OBS model of Gillet et al. (2015), which is
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Figure 5. (a) Eigenvalue spectrum of the residuals covariance matrix for European observatories and geographic
contributions of each European observatory to the eigendirection corresponding to (b) the largest eigenvalue of the
residuals covariance matrix, (𝜆0, the “noisiest” direction), (c) the second largest eigenvalue of the residuals covariance
matrix, (𝜆1, the “second noisiest” direction), and (d) the eigendirection corresponding to the third largest eigenvalue of
the residuals covariance matrix, (𝜆2, the “third noisiest” direction). CLF = Chambon-la-Forêt, France; NGK = Niemegk,
Germany; WNG = Wingst, Germany.

Figure 6. Comparison of the proxy used for external signal removal at
European observatories and first differences of monthly means of the Dst
index. The top panel shows the two time series, and the bottom panel
shows their discrete Fourier transforms. Their correlation coefficient is given
on the top left.

constrained by observatory and satellite data and spans the period
1840–2020. Our software requires the user to have a compiled exe-
cutable for the field model; the Fortran source code is available online at
http://www.spacecenter.dk/files/magnetic-models/COV-OBSx1/, and no
modifications to it are necessary in order to run it using our code. MagPySV
can obtain the names and locations of all geomagnetic observatories with
data stored at WDCE and produce predicted magnetic field and SV time
series at those locations for a given date range and frequency, which are
then used for denoising and/or plotting. The COV-OBS source code can be
easily modified to support spline files for other magnetic field models, in
which case, the output will be in the same format and can be read using
MagPySV functions. Otherwise, field model output from different codes
can be read and manipulated using standard Python commands.
2.7.2. Treatment of Missing Data
The built in PCA method of Python’s Scikit-learn package (Pedregosa et
al., 2011) uses singular value decomposition, which is more efficient than
calculating the covariance matrix of the residuals and then finding its
eigenvalues/vectors. However, this method cannot be used when any
data are missing, and the user must either infill data or remove rows
with NaN values. Although MagPySV does include a denoising function
that infills missing data using imputation, this is usually not appropriate
because many series have large gaps (several months or years), or the
period of interest may begin several years prior to the opening of some
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Figure 7. First differences of monthly means at Chambon-la-Forêt before
(blue) and after (red) denoising with residuals in the two noisiest
eigendirections used as the proxy for unmodeled
external signal.

observatories among those considered. Dropping rows containing one
or more NaN values means removing all data for that date (a month
if using FDMM or ADMM or year if using annual means) even if the
value is missing at only one observatory out of all those consid-
ered. Since there are many gaps in different observatories at differ-
ent times, this potentially results in discarding the majority of usable
data. The recommended implemented method uses masked arrays to
calculate covariance matrix of non-NaN values, allowing the use of
“gappy” series without discarding useful information and data from
observatories whose series do not cover the entire period of interest.

3. Case Study I: European Observatories

Europe has a dense network of high quality magnetic observatories, many
with several decades of continuous data. Consequently, SV has been
well-studied in this region using ADMM, and several geomagnetic jerks
have been first identified there. However, no studies using FDMM have
been reported due to their high noise content. In this case study, we use
MagPySV to denoise FDMM between 1960 and 2010 for a group of three
European observatories simultaneously (CLF, France; NGK, Germany; and
Wingst, Germany) to produce higher-resolution SV series than previously
investigated. In particular, we are interested in whether the internal field
model is able to reproduce sharp changes in the data at jerk occurrence

times and whether the new series show evidence of the alternative jerk morphology proposed by Holme and
de Viron (2013). On the basis of a discontinuity in length-of-day series, they proposed a discontinuity in the
SV itself for the 2003.5 event rather than the well-established definition of a jerk being a change in SV trend
(the secular acceleration). Figure 5a shows the eigenvalue spectrum of the residuals covariance matrix when
all observatories are considered together, having performed all initial processing steps except applying an ap
threshold and removing outliers. Note that Python assigns indices from 0 rather than 1, so that, for example,
the eigenanalysis of the covariance matrix for three observatories yields nine eigenvalues (and correspond-
ing eigenvectors) that are numbered from 0 to 8. Since this paper accompanies Python software, the figures
presented here follow Python numbering convention. The largest eigenvalue, 𝜆0, corresponds to the noisiest
eigendirection, v0; that is, the direction contributing the most to the unmodeled external signals. This eigendi-
rection is predominantly in the X direction, with some Z, and the second noisiest direction, v1, corresponding
to 𝜆1, is predominantly in the Z, with some X (see Figures 5b and 5c). As previously reported in Wardinski and
Holme (2011) for single observatory denoising, these geographic components correspond to the direction of
the magnetic signature of the magnetospheric ring current relative to Europe and are likely attributable to
that external source. In the third noisiest direction, corresponding to 𝜆2, a dominant Y contribution occurs at
all locations (Figure 5d). A coherent signal in the residuals could arise via two sources; first, an external signal
that is present in data but not the internal field model (noise), or second, an internal field variation that is not
captured by the internal field model, possibly because such smoothed models sometimes cannot replicate
the sharpest temporal changes in the data, such as jerks. In separate analyses (not shown here), we investi-
gated several further groups of observatories in Europe, North America, and Asia, considering both regional
and global observatory combinations, and found that this dominant Y contribution to v2 is present across all
of Europe but not in the other geographic regions. Since many jerks are most clearly seen in the Y compo-
nent, this signal may be of internal origin, appearing coherently across European observatories due to their
small geographic spread. However, a Fourier analysis of the time series in that direction (the discrete Fourier
transform) does show a significant semiannual component, from which we infer that this direction is at least
partly of external origin perhaps related to non-axisymmetric magnetospheric ring currents. Since we are
not able to separate the internal and external parts of v2, we leave it in the data and use only the residuals
in eigendirections v0 and v1 to denoise in this example. Note that the dominant Z signal in v1 may also be
of partly internal origin; see Figure 6 for a comparison of our external signal proxy with Dst, which shows a
strong correlation coefficient and that both signals contain strong annual and semiannual components. We
use time changes (FDMM to match the used SV data) of the definitive Dst index from WDC Kyoto (available at
http://wdc.kugi.kyoto-u.ac.jp/dstae/index.html) for
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Figure 8. (a) Field model predictions for the X (top), Y (middle), and Z
(bottom) SV components at CLF, NGK, and WNG, along with the averaged
field model over these three observatories (black-dashed line) and
(b) denoised X (top), Y (middle), and Z (bottom) SV components averaged
over CLF, NGK, and WNG, along with the averaged field model (red). CLF =
Chambon-la-Forêt, France; NGK = Niemegk, Germany; WNG = Wingst,
Germany; SV = secular variation.

comparison with our external noise proxies; we have also tried using the
Dcx index (corrected, extended Dst available at http://dcx.oulu.fi/; Mursula
et al., 2008) but found much weaker correlations than with the original Dst
index. Presumably, this is because significant annual and semiannual varia-
tions are present in our noise proxies; these variations have been removed
from the Dcx index but not Dst. The denoising (using the projected resid-
uals in the two noisiest eigendirections as the proxy for external signal
in (7) results in SV series with much reduced external contamination; see
Figure 7, for example, which shows the SV for CLF observatory prede-
noising (blue) and postdenoising (red) and the root-mean-square of the
residuals for comparison. The Z, and to a lesser extent X , components show
much improvement (in the sense that high magnitude, rapid variation
due to external sources has been removed while the internal field varia-
tion remains), as they contributed most to the noisy eigendirections. See
also Shore et al. (2016), who used PCA of observatory hourly means dur-
ing geomagnetically quiet days (at middle to low latitudes) to extract the
dominant spatiotemporal patterns of long-period external fields.

Given their close geographic proximity, it is of interest to consider whether
averaging data over these three locations can further reduce noise. The
model predictions for SV are similar in the three locations (Figure 8a) and
so an average is suitably representative of the individual locations. Aver-
aging the data yields the SV series shown in Figure 8b, which clearly show
that the field model very closely follows the general trend of the data, par-
ticularly in the Z and X components, which is unsurprising as the dense
European data are used to constrain the field model in the first place. In
Y , the data permit sharper temporal changes than present in the model,
particularly at previously determined jerk occurrence times (Brown et al.,
2013), which perhaps explains the Y dominance in the v2 direction that
was left in the data. However, even with higher-resolution series than pre-
viously studied, we see no evidence of a discontinuity in SV itself at jerk
times (as proposed by Holme & de Viron, 2013) rather than in its time
derivative, the secular acceleration, for the 2003.5 event.

4. Case Study II: High Latitude Observatories

High latitude observatories provide vital information about external field
variations, in particular the field-aligned currents, aurorae, and dynamics
of the magnetosphere, but are often neglected from internal magnetic
field studies due to their high external signal content. However, observa-
tionally constrained field models have shown marked differences in SV at
high and low latitudes, such as four persistent quasi-stationary high lati-
tude equatorially symmetric flux lobes (Bloxham & Gubbins, 1985), which
are believed to be a surface manifestation of rotationally aligned convec-
tion rolls in the outer core. Livermore et al. (2017) used recent satellite data
(Finlay et al., 2016; Olsen et al., 2014) to infer the presence of an acceler-
ating jet on the tangent cylinder due to the observed acceleration of the
Canadian and Siberian flux lobes. The tangent cylinder is the imaginary
cylinder in the outer core that just surrounds the inner core and is parallel
to the axis of rotation and manifests in the observable geomagnetic field

at high latitudes. There is evidence that the tangent cylinder is the source region for torsional waves in the
outer core, observations of which allow the estimation of magnetic field strength inside the core (Gillet et al.,
2010). Thus, the high latitudes are of great interest to core dynamicists, but efforts to tie observations to their
underlying physical mechanisms are hindered by the lack of long SV series in these regions because satellite
missions provide excellent data quality and resolution but are temporally discontinuous and of limited
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Figure 9. Map of selected magnetic observatories located within the polar
cap, auroral zone, and subauroral zone. The black lines denote approximate
boundaries between the three high latitude regions after Nikitina et al.
(2016) Figure 1. THL = Thule, Greenland; MBC = Mould Bay, Canada; RES =
Resolute Bay, Canada; CBB = Cambridge Bay, Canada; BRW = Barrow, Alaska;
YKC = Yellowknife, Canada; BLC = Baker Lake, Canada; GDH = Qeqertarsuaq
(Godhavn), Greenland; VIC = Victoria, Canada; OTT = Ottawa, Canada; STJ =
St. John’s, Canada; ALE = Alert, Canada; CMO = College, USA; FCC = Fort
Churchill, Canada; IQA = Iqaluit, Canada; BRD = Brandon, Canada.

duration, and ground-based observatories have longer series but are
subject to often overwhelming contamination. In this case study, we
investigate SV at three clusters of observatories, grouped in different
zones according to their geomagnetic latitude. The zones are referred to
as the polar cap, the auroral zone, and the subauroral zone (Figure 9).

4.1. Polar Cap
We consider three observatories in the polar cap: Mould Bay, Canada; Res-
olute Bay, Canada; and Thule, Greenland (THL); see Figure 9 for their loca-
tions. The eigenvalue spectrum shows a change of slope after the largest
eigenvalue 𝜆0 (Figure 10a), and the corresponding noisy eigendirection is
predominantly Z, indicating that noise is vertical near geomagnetic pole
(Figure 10b). Denoising using residuals in direction v0 results in significant
improvements in the Z SV component, see Figure 11 for an example at
THL, but the other components remain the same as before. In order to see
improvements in all components, we need to use residuals in additional
eigendirections in the noise proxy. However, we did not see any coher-
ent patterns in the next few eigendirections, so a more detailed analysis of
residuals is needed here. Being mostly vertical, we found no strong corre-
lations between the noise proxy and time variations (ADMM to match the
used SV data) of any of the geomagnetic indices we consider (Dst [corre-
lation coefficient 0.55], ap [0.54], and AE [0.60]), which is unsurprising as
none of these indices describes activity over the polar caps. Although the

Polar Cap Index (Troshichev et al., 1988) is designed for this purpose, we did not consider it in the present
analysis because we include THL observatory, whose data are used to derive the Polar Cap North Index. In a

Figure 10. (a) Eigenvalue spectrum of the residuals covariance matrix for polar observatories and (b) geographic
contributions of each polar observatory to the eigendirection corresponding to the largest eigenvalue of the residuals
covariance matrix, (𝜆0, the “noisiest” direction). MBC = Mould Bay, Canada; RES = Resolute Bay, Canada;
THL = Thule, Greenland.
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Figure 11. Annual differences of monthly means secular variation at THL before (blue) and after (red) denoising with
residuals in the noisiest eigendirection used as the proxy for unmodeled external signal. THL = Thule, Greenland.

Figure 12. (a) Eigenvalue spectrum of the residuals covariance matrix for auroral observatories and (b) geographic
contributions of each auroral observatory to the eigendirection corresponding to the largest eigenvalue of the residuals
covariance matrix, (𝜆0, the “noisiest” direction). BLC = Baker Lake, Canada; BRW = Barrow, Alaska; YKC = Yellowknife,
Canada.
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Figure 13. Annual differences of monthly means at BRW before (blue) and
after (red) denoising with residuals in the noisiest eigendirection used as the
proxy for unmodeled external signal. BRW = Barrow, Alaska.

separate analysis (not shown), we also considered Qeqertarsuaq (God-
havn), Greenland, observatory (GDH) as part of the polar cap cluster of
observatories, but we found that its noise content is different from those
presented here. However, it is similar to that of the auroral observatories
described in the next section. Since its location is close to the approximate
boundary between the polar cap and auroral zone in Figure 9, and the real
boundary is difficult to determine precisely, GDH observatory could be in
either of these geomagnetic zones. As our PCA reveals very different exter-
nal signal directions in these two regions, and those at GDH are consistent
with the auroral observatories, we argue that GDH belongs to that high
latitude region. We further suggest that this method could be used to bet-
ter categorize other observatories that lie near the boundaries between
different geomagnetic regions.
4.2. Auroral Zone
We consider three observatories in the auroral zone: Baker Lake, Canada;
Barrow, Alaska; and Yellowknife, Canada; see Figure 9 for their locations.
The eigenvalue spectrumc has a clear change in slope at 𝜆2, separating a
steep slope for the first two eigenvalues and a shallow slope for the rest
(Figure 12a). The signals in the two noisiest eigendirections are mostly
horizontal (X and Z), see Figure 12b for an example. Using only residuals
in v0 and using both v0 and v1 as the external signal proxy for denois-
ing gives very similar results for this group of observatories. We therefore
show results using the noisiest direction only, for example, the SV at Bar-

row, Alaska, in Figure 13 shows improvements in all three components, though Y is the least improved. The
noisy direction has a relatively strong correlation with the AE index (coefficient is 0.83; Figure 14) and a slightly
weaker correlation with Dst (0.80). We have tried including Cambridge Bay, Canada, observatory in the auroral
observatories, which lies on the boundary between the polar cap and auroral zone according to Figure 9, but
found that its noise is predominantly vertical, which is more consistent with the polar cap than this region.
Again, this indicates that PCA is a useful method for determining to which high latitude region an observatory
belongs based on its external signal content rather than only its location.
4.3. Subauroral Zone
We consider three observatories in the subauroral zone: Ottawa, Canada; St. John’s, Canada; and Victoria,
Canada; see Figure 9 for their locations. The eigenvalue spectrum has a change in slope at 𝜆1 (Figure 15a),

Figure 14. Comparison of the proxy used for external signal removal at auroral observatories and annual differences of
monthly means of the AE index. The top panel shows the two time series, and the bottom panel shows their discrete
Fourier transforms. Their correlation coefficient is given on the top left.
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Figure 15. (a) Eigenvalue spectrum of the residuals covariance matrix for subauroral observatories and (b) geographic
contributions of each subauroral observatory to the eigendirection corresponding to the largest eigenvalue of the
residuals covariance matrix, (𝜆0, the “noisiest” direction). OTT = Ottawa, Canada; STJ = St. John’s, Canada;
VIC = Victoria, Canada.

Figure 16. Annual differences of monthly means at OTT before (blue) and
after (red) denoising with residuals in the noisiest eigendirection used as the
proxy for unmodeled external signal. OTT = Ottawa, Canada.

and the residuals in the noisy eigendirection are almost entirely horizon-
tal and equally split between X and Z (Figure 15b). We use the residuals
in v0 as the external signal proxy, see Figure 16 for an example of the
results at Ottawa, Canada. The noise proxy has a relatively strong correla-
tion with the Dst index (coefficient 0.80; Figure 17), though this is weaker
than the correlation between the European noisy direction and Dst despite
the similar latitudes.

In these two case studies, we have shown that ADMM SV series can be
significantly improved upon, and usable high-resolution FDMM series con-
structed, by implementing the proposed denoising method, though not
all components are improved to the same degree. We have presented
cleaned high-resolution SV series for European observatories and cleaned
data for high northern latitude observatories. Cleaner results could be
obtained by removing more eigendirections when denoising, though care
must be taken to determine that residuals in these directions are of exter-
nal origin; otherwise, the internal field variations of interest will be also
removed. However, the simple analyses presented in these case studies
illustrate the key point; we are able to characterize noise in different geo-
graphic regions using this method, and MagPySV provides an easy and
reproducible means to do this. We are able to easily identify observatories
at which the noise behaves similarly, such as in different geomagnetic lat-
itude bands, and have found that the best denoising results are obtained
when considering groups of observatories with similar noise profiles.
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Figure 17. Comparison of the proxy used for external signal removal at subauroral observatories and annual differences
of monthly means of the Dst index. The top panel shows the two time series, and the bottom panel shows their discrete
Fourier transforms. Their correlation coefficient is given on the top left.

5. Code Implementation and QC

The MagPySV code is under version control through GitHub and is freely available at
https://github.com/gracecox/MagPySV under the MIT/X11 license. The latest working version is in the
master branch, and new features are implemented in various development branches. For future reference,
the specific MagPySV version that accompanies this paper may be accessed using its digital object iden-
tifier at https://doi.org/10.5281/zenodo.1340640. Parts of the code have associated unit and functional
tests, which are run via continuous integration with Travis upon each push to the master branch. The
documentation is hosted online at http://magpysv.readthedocs.io/en/latest/; the current status of latest
changes is displayed on documentation homepage (whether build is passing or failing, etc). The code
is available on PyPI and may be installed using pip (recommended) or alternatively from source via git
clone. Two Jupyter notebook tutorials of MagPySV’s workflow are found in a separate GitHub repository at
https://github.com/gracecox/MagPySV-examples, which reproduces all figures shown in this paper except
the flowchart in Figure 1. Detailed installation instructions are on the GitHub project homepage and on the
documentation homepage.

The code is written in Python language version 3.x, which is mostly, but not completely, backward compat-
ible with Python 2.x languages and a set of third party libraries including NumPy (van der Walt et al., 2011),
SciPy (Jones et al., 2001), Pandas (McKinney, 2010), Scikit-learn (Pedregosa et al., 2011), Matplotlib (Hunter,
2007), and Jupyter (Pérez & Granger, 2007). The coding style is mostly procedural programming rather than
object-oriented to make implementation of desired functionality more transparent and easier to follow. It
complies with PEP8 recommendations for Python programming style, which are designed to improve read-
ability, consistency of code between different developers, and ease of maintenance. Adherence to Python
programming standards is checked using Codacy, an automated code analysis/quality tool that gives code
quality metrics on each push to the repository. The package is itself a library (a collection of modules) so does
not include a graphical user interface. The code may be run on the command line or via interactive Jupyter
notebooks, the latter of which contain interspersed text, code snippets, and code output such as figures. Each
module/function is documented using sphinx-docs formatted doc strings that specify the purpose of the
code and any inputs/outputs, which can be accessed through the documentation or the help command in
Python. We would welcome feedback and/or suggestions for future extensions to the software. Any mem-
ber of the community can contribute to this project by forking (downloading) the MagPySV repository from
GitHub, making their changes to the code and then requesting that they be merged with the master branch
via a pull request.
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The library of code to access the BGS GDP is also written in Python 3.x and follows the same ethos
of coding style and unit testing as MagPySV. The code can function as a standalone package, available
from PyPI through pip as gmdata_webinterface, and is installed automatically as a dependency of Mag-
PySV. The source is also open under an MIT/X11 license and version controlled, available on GitHub at
https://github.com/willjbrown88/geomag_wdc_web_app_interface. We again welcome comments and con-
tributions as we look to expand the functionality in future updates.

6. Summary

We have presented MagPySV, a Python package for obtaining magnetic observatory hourly means from
WDC Edinburgh, processing the raw data, and removing external magnetic field contamination. Much of this
data processing is currently performed using closed-source piecemeal codes or on an ad hoc basis, which
impedes efforts to reproduce the data sets underlying publications. The software provides a consistent and
automated method for creating time series suitable for studying internal field variations and their underly-
ing core processes. The eigensystem method employed permits use of all data (except outliers) rather than
discarding potentially useful data to reduce noise (e.g., by using only local nighttime data) or by perform-
ing data selection using a geomagnetic index, which may be inappropriate because no single geomagnetic
index is designed to capture all external field sources in all geographic regions. Also, such indices are typically
created using only a handful of observatories and are therefore biased to particular geographic regions. We
have presented two case studies of denoised data: first in Europe, which has a dense observatory network
and has been well studied using ADMM. We have produced cleaned high-resolution SV series (FDMM) but
found no evidence for geomagnetic jerks manifesting as a discontinuity in SV (as proposed by Holme & de
Viron, 2013) rather than in secular acceleration. In the second case study, we have shown that the noise con-
tent at high northern latitudes is different in three zones corresponding to geomagnetic latitude (the polar
cap, auroral zone, and subauroral zone). Considering groups of observatories whose noise content is simi-
lar produces the best results and allows us to make better use of available data for studying core dynamics,
especially in or around the tangent cylinder. We hope this software will be of use to the geomagnetic commu-
nity and welcome their contributions. The code is of potential interest to researchers who wish to make their
work reproducible, those investigating rapid geomagnetic SV (e.g., jerks) who would like data at higher tem-
poral resolution, and those who invert observatory data to investigate core flow. It may also appeal to core
dynamicists and numerical modelers who do not usually work with geomagnetic observatory data due to the
time and expertise involved but who would like to draw comparisons between their models and observations
given easy access to the data. Since parameterized models of external magnetic field variations do not cap-
ture all signals due to our incomplete knowledge of the physical processes involved, PCA offers an advantage
in that it is able to better characterize and extract noise from the data. Of course, though we have referred to
external magnetic field variations as noise from the point of view of internal magnetic field studies, they are
the subject of interest in other disciplines. Our external signal proxies obtained through PCA provide infor-
mation about external signals that is not gained through other methods, which has obvious applications to
external field studies. We are able to look in detail at residuals projected into the different eigendirections,
which helps to identify which external sources are contributing the most at different geomagnetic latitudes.
Additionally, we envisage immediate applications of MagPySV to electromagnetic induction studies because
the noise proxies can be used as the external source rather than the simplified (often axisymmetric) spherical
harmonic parameterized models currently employed.
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