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Mean field dynamo
Magnetic field B = B’ + b, velocity v=U +u

oB’
at

= rot (U x B") + rot (u x b) +nAB’

Parker's Dynamo
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Cosmic Dynamo — Oscillating System

Cosmic dynamo system — is oscillator with chaotic components

Solar Cycle Geomagnetic Polarity Scale
(1 - 170 Myr, 2 = 560 Myr, 3 — 1700 Myr)



Solar Cycle as a Strange Attractor

The simplest model of the nonlinear solar dynamo with chaotic regimes

dA

=—-A+DB-CB
dt + ’
% = —0B+dA,
qc _ —vC+ AB,
dt

where A and B — the azimutal componets of potential and magnetic field, C —
deviation of helicity from its value in the absence of the magnetic field, o —
ratio of diffusion times of B and A, D — dynamo number.

Zeldovich, Ruzmaikin, 1980

The third equation under the condition C(0) = 0, is equivalent to
t
C(t) = / e "I A(r)B(r) dr
0

This is dynamical quenching of the field by a t-parametric functional from
helicity with an exponential kernel



2-mode af2-dynamo with stochastic memory

Distribution of polarity intervals
L. Feshchenko, G.Vodinchar // Nonlin. Processes Geophys., 2015
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Ra(t) = Ry [1 te (1 - Bz(t)) +.£(t)] 7

where £(t) is some non-Markov random pulse process with zero mean value.
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Distribution of polarity intervals Number of N(A) intervals of length
A, which contain at least one inversion

Hausdorff dimensions for real geomagnetic polarity timescales for 170 Myr, 560
Myr, and 1700 Myr are 0.88, 0.83, and 0.87, respectively (Pechersky et al.,
1997).



Basic equations

The af2-dynamo (Parker’s dynamo) for axis-symmetric case:

-
8(; =rot (v’ x BP)+nABT,
(1)
oB” T P
B = rot (&B") +nAB".
v’ — toroidal large-scale velocity field (differential rotation);
& — helicity of small-scale turbulence;
n — turbulent magnetic diffusivity.
The simplest 2-mode approximation:
B=B"+B" =B"()b"(r) + B (t)b"(r), [b"(r)l=Ib"(r)I=1 (2)
Using the Galerkin method:
2 2
/ [bT(r)] dr = / [bT(r)] dr=1 (3)
Q Q
T
djt — wB” — 9B,
JB° (4)
W = aBT — T]PBP.

The Galerkin coefficients: w — is intensity of Q-generator, o — is intensity of



Feedback

The influence of magnetic field on helicity: a = ap — Q(B(t)”, B(t)"), where
ag — value of alpha-effect in the absence of the strong magnetic field, and
Q(-,-) — is a quadratic form.
The energy of the field:

[Bar=18T P + 1870

The helicity of the field:
/B rot "B dr = BT(t)BP(t)/ [bT rot~'b” + b” rot*le} dr ~ BT (t)B"(¢).
We assume, that
t
Q= / K(t — T)BT(T)BP(T) dr.
0
This predetermined expression @ are specify the model of feedback — hereditary

quenching of a-effect by helicity.
K(+) > 0 — some kernel, with the property K(4o00) = 0.



2-modes model

The model equations:

dBT

= wB” — nTBT7
dB”
- (a0 — Q)B" —n"B",

Q(t) = /Ot K(t —7)B" (r)BP () dr.

The model is closed by the initial conditions B (0) = By , BF(0) = Bf. For
planetary and stellar dynamo systems, it is reasonable to assume that By = 0.

(BT, B",Q) = (0,0,0) - stationary point.
It is unstable if D = wao/(n"n") > 1, i.e. D - is dynamo-number.

Replacement of the variables:
t—n"t, x(t)=B", y(t)=wB"/n", z(t)=wQ/(n"n").

New time scale — is the poloidal field diffusion time.



2-modes model

E:U(Y_XL
L= (D2,

z(t) = /0t K(t — 7)x(7)y(7) d7

where o = 1" /n” > 1. For Parker's dynamo o =~ 3.37.
For all x(0) = xo and y(0) = yo, this system equivalent to equation

tcjll'tZ +(1+ )d—i+@x3— [a(D—1)+X7°K(t)—W(t) x =

/Jt—T (7) dr,

J() = 2)+0K()

with initial conditions x(0) = xo, x'(0) = o (yo — Xo).



Typical dynamic regimes
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Hereditary oscillator
We further consider the case x(0) = 0.

—[o(D = 1) = w(t)]x =0,
ou

ox

d2 K(O) 3
2

dt? +&,_2 dt et

>2

where

U= Ax" — B(t)x*

— K(0)/8, 2B(t)=o(D—1)— /OtJ(t — () dr

>0

w(t)

K(0) # 0 — instant feedback K(0) = 0 — delay of feedback

o [

‘11



K(s) = e b b >0 - Lorenz system

t
z(t) = / e P (Dy(r)dr & % =xy — bz, z(0)=0
0

J(s) =e (20 —b)/2; 2B(t)=0(D—-1)— /Ot J(t —7)x° () dr

b>20=B(t)>0forallt b< 20 = B(t)> 0 for some t

VAV,

Stationary points: (i\/b(D —1),+/b(D—-1),D — 1) .

V] b()ZO'—].

| — instability points;
Il, 11l — stability points.

Note that b > 20 = b > 0o — 1.
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Numerical simulation: o = 3.37
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K(s) =s-e > b> 0 - delay of feedback

b <20 = J(s)>0foralls

7.0

.
v\l

b:

b b b b B

I

i

05

b=

I

14



K(s)=1/(1+5s)?, b>0

20’(1 =+ S) /t 5
I(s) = . 2B(t)=o(D—-1)— [ J(t— d
(s) = 2(1+ s)ot (t) = ol ) ; (t—=7)x(7)dr
VAV R
b <20 = J(s)>0forall s \J/
T: D=60; b=0.5 | —
a: D=80; b=0.5 [
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Quenching by energy

E*U(Y*X)
dy_
E_(D z)x—y

Oscillator???

dx K(0)
1) KOs o0 1)~ w(e]x

w(t) = 2/OtJ(t — 7)x*(7) dr,

J() =K' () +oK(),

o= [ e (%) o

with initial conditions x(0) = xo, x'(0) = o(yo — Xo).

16



Conclusions

> af)-dynamo system can be considered as an hereditary oscillator

» Different dynamo regimes can be obtained by varying the parameters of
the model and the quenching kernel — regular oscillations, chaotic regimes,
stable generations, vacillations, dynamo-bursts
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