Reconstruction of regional distributions of electron density in the ionosphere from heterogeneous remote sensing data

Pavlov I.A., Padokhin A.M.
Lomonosov Moscow State University

The relevance of research

The addition of quasihorizontal rays let us improve the reconstruction of the vertical structure of the electron density in the ionosphere

Research objectives

- To develop a method for reconstructing the two-dimensional altitudelatitude distribution of electron concentration in the ionosphere from heterogeneous radio sounding data and UV spectrometry data of the atmosphere's airglow at 135.6 nm .
- To develop an iterative algorithm that allows to correct the solution sequentially at each step using UV data and radio sounding data.
- To test the algorithm on model distributions of upper atmosphere parameters.
- To explore the influence the initial approximation on the reconstruction results.

Synthetic data sources

- NeQuick2 model
- NRLMSISEOO model
- Parameters of DMSP satellite orbits
- Operating parameters of CERTO satellite beacons and SSULI UV spectrometers

Problem Formulation

1. Satellite based data
2. Ground based data

$$
\int_{l_{k}} n_{e}(\phi, h) d l_{k}=T E C_{k}
$$

ART Algorithm

$$
\min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{y}\|^{2}
$$

$$
\mathbf{x}^{m+1}=\mathbf{x}^{m}+\frac{y_{k}-\left\langle\mathbf{A}^{k}, \mathbf{x}^{m}\right\rangle}{\left\langle\mathbf{A}^{k}, \mathbf{A}^{k}\right\rangle} \mathbf{A}^{k}
$$

Importance of initial approximation

Zero initial guess, UV tomography

Zero initial guess, radio tomography

Approach to the solution

$$
\int_{l_{k}} n_{e}^{2}(\phi, h)\left(\exp \left[-\int_{l_{k}^{\prime}} \rho\left(l_{k}^{\prime}\right) d l_{k}^{\prime}\right]\right) d l_{k}=I_{k}
$$

smoothing $D \sim \Delta \longrightarrow \int_{l_{k}} n_{e}(\phi, h) d l_{k}=T E C_{k^{\circ}} \longrightarrow$

Influence of Iteration Smoothing

NO SMOOTHING

Influence of Iteration Smoothing

Influence of Iteration Smoothing

Influence of Iteration Smoothing

Conclusions

- The developed iterative algorithm allows to correct the solution at each step sequentially using UV data and radio sounding data.
- Reconstruction based on UV atmospheric airglow radiation data can be effectively used as an initial approximation for a radiotomography problem.
- The location of ground receivers determines reconstruction errors and the ability to reconstruct small-scale structures.
- The smoothing parameter allows to correct the artifacts of the reconstruction algorithm and achieve a solution with less error.
- Further include vertical/oblique sounding data or GNSS radio occultation in the inversion.

