MATCHING THE PARAMETERS OF SHELLTURBULENCE MODELS WITH THE PROBABILITIES OF INTERACTION

СОГЛАСОВАНИЕ ПАРАМЕТРОВ КАСКАДНЫХ МОДЕЛЕЙ ТУРБУЛЕНТНОСТИ С ВЕРОЯТНОСТЯМИ ВЗАИМОДЕЙСТВИЯ ВОЛНОВЫХ ОБОЛОЧЕК

L.K. Feshchenko, G.M. Vodinchar

feshenko.lk@yandex.ru

Institute of Cosmophysikal Research and Radio Wave Propagation Far eastern branch of the russian Academy of sciences

September 25-29, 2023
Paratunka, Kamchatsky kray

MHD equations for incompressible fluid

Description in physical space - fields $\mathbf{v}(\mathbf{x}, t), \mathbf{B}(\mathbf{x}, t), p(\mathbf{x}, t), \mathbf{f}(\mathbf{x}, t)$
Navier-Stokes equation

$$
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \nabla) \mathbf{v}=-\nabla p+\operatorname{Re}^{-1} \Delta \mathbf{v}+(\nabla \times \mathbf{B}) \times \mathbf{B}+\mathbf{f}, \quad \nabla \mathbf{v}=0
$$

where Re - Reynolds number.
Equation of magnetic field induction

$$
\frac{\partial \mathbf{B}}{\partial t}=\nabla \times(\mathbf{v} \times \mathbf{B})+\mathrm{Re}_{m}^{-1} \Delta \mathbf{B}, \quad \nabla \mathbf{B}=0,
$$

where Re_{m} - magnetic Reynolds number.

Description in Fourier space - fields $\hat{\mathbf{v}}(\mathbf{k}, t), \hat{\mathbf{B}}(\mathbf{k}, t), \hat{\mathbf{f}}(\mathbf{x}, t)$

$$
\begin{aligned}
& \frac{\partial \hat{\mathbf{v}}}{\partial t}=\imath \int_{\mathbb{R}^{3}} d \mathbf{q} \int_{\mathbb{R}^{3}} d \mathbf{s} \delta(\mathbf{k}+\mathbf{q}+\mathbf{s}) S(\mathbf{k}, \mathbf{q}, \mathbf{s}) \bullet \hat{\mathbf{v}}^{*}(\mathbf{q}) \bullet \hat{\mathbf{v}}^{*}(\mathbf{s})-\operatorname{Re}^{-1} k^{2} \hat{\mathbf{v}}+ \\
& +\imath \int_{\mathbb{R}^{3}} d \mathbf{q} \int_{\mathbb{R}^{3}} d \mathbf{s} \delta(\mathbf{k}+\mathbf{q}+\mathbf{s}) L(\mathbf{k}, \mathbf{q}, \mathbf{s}) \bullet \hat{\mathbf{B}}^{*}(\mathbf{q}) \bullet \hat{\mathbf{B}}^{*}(\mathbf{s})+\mathbf{k} \times(\mathbf{k} \times \hat{\mathbf{f}}) / k^{2}, \quad \mathbf{k} \cdot \hat{\mathbf{v}}=0 \\
& \frac{\partial \hat{\mathbf{B}}}{\partial t}=\imath \int_{\mathbb{K}^{3}} d \mathbf{q} \int_{\mathbb{R}^{3}} d \mathbf{s} \delta(\mathbf{k}+\mathbf{q}+\mathbf{s}) W(\mathbf{k}, \mathbf{q}, \mathbf{s}) \bullet \hat{\mathbf{v}}^{*}(\mathbf{q}) \bullet \hat{\mathbf{B}}^{*}(\mathbf{s})-\operatorname{Re}_{m}^{-1} k^{2} \hat{\mathbf{B}}, \quad \mathbf{k} \cdot \hat{\mathbf{B}}=0
\end{aligned}
$$

where $S(\cdot, \cdot, \cdot), L(\cdot, \cdot, \cdot), W(\cdot, \cdot, \cdot)$ - some real tensor functions of rank 3.

Shells in Fourier space

Let D be the linear size of the turbulent system (unit of length) and the number $q>1$. Introducing hierarchical scale ranges $D_{n}=\left(q^{-n-1} ; q^{-n}\right]$, where $n \in \mathbb{Z}$.

The sizes of the ranges are $(q-1) / q^{n}$, and $\bigcup_{n=-\infty}^{+\infty} D_{n}=(0 ;+\infty)$.
Corresponding shells $P_{n}=\left\{\mathbf{k} \mid q^{n} \leq\|\mathbf{k}\|<q^{n+1}\right\}$

We introduce complex collective variables of velocity $U_{n}(t)$ and magnetic field $B_{n}(t)$, where $\left|U_{n}(t)\right|$ and $\left|B_{n}(t)\right|$ are interpreted as measures of all structures (vortices) of a given range of wave numbers .
For example, $\left|U_{n}(t)\right| \sim \int_{\mathbf{k} \in P_{n}}\|\hat{\mathbf{v}}(\mathbf{k}, t)\| d \mathbf{k}$.

Shell models

Shell turbulence model - a system of dynamic equations for collective variables.
The structure of the equations should be similar to the structure of MHD equations in Fourier space

$$
\begin{aligned}
& \frac{\partial \hat{\mathbf{v}}}{\partial t}=\imath \int_{\mathbb{R}^{3}} d \mathbf{q} \int_{\mathbb{R}^{3}} d \mathbf{s} \delta(\mathbf{k}+\mathbf{q}+\mathbf{s}) S(\mathbf{k}, \mathbf{q}, \mathbf{s}) \bullet \hat{\mathbf{v}}^{*}(\mathbf{q}) \bullet \hat{\mathbf{v}}^{*}(\mathbf{s})-\operatorname{Re}^{-1} k^{2} \hat{\mathbf{v}}+ \\
& +\imath \int_{\mathbb{R}^{3}} d \mathbf{q} \int_{\mathbb{R}^{3}} d \mathbf{s} \delta(\mathbf{k}+\mathbf{q}+\mathbf{s}) L(\mathbf{k}, \mathbf{q}, \mathbf{s}) \bullet \hat{\mathbf{B}}^{*}(\mathbf{q}) \bullet \hat{\mathbf{B}}^{*}(\mathbf{s})+\mathbf{k} \times(\mathbf{k} \times \hat{\mathbf{f}}) / k^{2}, \quad \mathbf{k} \cdot \hat{\mathbf{v}}=0 \\
& \frac{\partial \hat{\mathbf{B}}}{\partial t}=\imath \int_{\mathbb{K}^{3}} d \mathbf{q} \int_{\mathbb{R}^{3}} d \mathbf{s} \delta(\mathbf{k}+\mathbf{q}+\mathbf{s}) W(\mathbf{k}, \mathbf{q}, \mathbf{s}) \bullet \hat{\mathbf{v}}^{*}(\mathbf{q}) \bullet \hat{\mathbf{B}}^{*}(\mathbf{s})-\operatorname{Re}_{m}^{-1} k^{2} \hat{\mathbf{B}}, \quad \mathbf{k} \cdot \hat{\mathbf{B}}=0
\end{aligned}
$$

The most common class of shell models (models like GOY: Gledzer-Okhitani-Yamada)

$$
\begin{aligned}
& \frac{d U_{n}}{d t}=\imath k_{n} \sum_{i, j=-\infty}^{+\infty} s_{i j} U_{n+i}^{*} U_{n+j}^{*}-\operatorname{Re}^{-1} k_{n}^{2} U_{n}+\imath k_{n} \sum_{i, j=-\infty}^{+\infty} L_{i j} B_{n+i}^{*} B_{n+j}^{*}+f_{n}(t), \\
& \frac{d B_{n}}{d t}=\imath k_{n} \sum_{i, j=-\infty}^{+\infty} W_{i j} U_{n+i}^{*} B_{n+j}^{*}-\operatorname{Re}_{m}^{-1} k_{n}^{2} B_{n}, \\
& n=-\infty, \ldots,+\infty, \quad S_{i j}=S_{j i}, \quad N_{i j}=N_{j i},
\end{aligned}
$$

where $k_{n}=q^{n}$ is the wave number of the n-th shell, $S_{i j}, L_{i j}, W_{i j}$ are real coefficients, $f_{n}(t)$ - models the external supply of energy to the n-th shell. Usually only $f_{0}(t) \neq 0$.
Within the same class, models differ from each other in matrices of nonlinear interactions $S_{i j}, L_{i j}, W_{i j}$.

Interaction restrictions

Limitation 1 - permissible range of interaction.
The interaction of shells is described by quadratic terms. The indices i and j define the «distance» between scales on a logarithmic scale.

A restriction on the «range» of interaction is introduced: $S_{i j}=L_{i j}=W_{i j}=0$, if $|i|>P$ or $|j|>P$. If $P \leq 2$, then only neighboring shells interact. If $P>2$, then the model is nonlocal (in scale space).

Limitation 2 - Interoperability.
The shells $n, n+i, n+j$ must contain the wave vectors from which a triangle is formed.

Figure for $P=5$ and parameter $q=(1+\sqrt{5}) / 2-$ «golden ratio» (left) and $q \geq 2$ (right).
All coefficients outside the gray area are assumed to be zero.

For any wave numbers from $a \in P_{n-1}$ and $b \in P_{n}$ there is a wave number $c \in P_{n+1}$ such that $a+b=c$, if and only if $q=(1+\sqrt{5}) / 2$.

Interaction restrictions

Limitation 2 - the necessity of the existence of invariants.
For $f_{n}(t) \equiv 0$ and $\mathrm{Re}^{-1}=\mathrm{Re}_{m}^{-1}=0$ (free motion of an inviscid ideally conducting medium), the MHD equations have quadratic invariants. The shell model must have their analogues.

- Total Energy

$$
E=\frac{1}{2} \int_{\mathbb{R}^{3}}\left(\mathbf{v}^{2}+\mathbf{B}^{2}\right) d \mathbf{x}=\frac{1}{16 \pi^{3}} \int_{\mathbb{R}^{3}}\left(\|\hat{\mathbf{v}}\|^{2}+\|\hat{\mathbf{B}}\|^{2}\right) d \mathbf{k} \sim \frac{1}{2} \sum_{n=-\infty}^{+\infty}\left(\left|U_{n}\right|^{2}+\left|B_{n}\right|^{2}\right)
$$

- Cross helicity

$$
H_{C}=\int_{\mathbb{R}^{3}} \mathbf{v} \cdot \mathbf{B} d \mathbf{x}=\frac{1}{8 \pi^{3}} \int_{\mathbb{R}^{3}} \hat{\mathbf{v}} \cdot \hat{\mathbf{B}}^{*} d \mathbf{k} \sim \sum_{n=-\infty}^{+\infty}\left(U_{n} B_{n}^{*}+U_{n}^{*} B_{n}\right)
$$

- Squared magnetic field potential \mathbf{A} (for two-dimensional flows)

$$
A^{2}=\int_{\mathbb{R}^{3}} \mathbf{A}^{2} d \mathbf{k}=\frac{1}{8 \pi^{3}} \int_{\mathbb{R}^{3}}\left\|\frac{\imath}{k^{2}} \mathbf{k} \times \hat{\mathbf{B}}\right\|^{2} d \mathbf{k} \sim \sum_{n=-\infty}^{+\infty} k_{n}^{-2}\left|B_{n}\right|^{2}
$$

- Magnetic helicity (for three-dimensional flows)

$$
\left.H_{B}=\int_{\mathbb{R}^{3}} \mathbf{B} \cdot \mathbf{A} d \mathbf{k}=\frac{1}{8 \pi^{3}} \int_{\mathbb{R}^{3}} \hat{\mathbf{B}} \cdot\left(\frac{-\imath}{k^{2}} \mathbf{k} \times \hat{\mathbf{B}}^{*}\right) d \mathbf{k} \sim \sum_{n=-\infty}^{+\infty} k_{n}^{-1} \operatorname{Re} B_{n} \right\rvert\, m B_{n}
$$

Limitation 4 - conservation of phase volume.
For $f_{n}(t) \equiv 0$ and $\mathrm{Re}^{-1}=\mathrm{Re}_{m}^{-1}=0$ the shell model should preserve the phase volume.

Magnetic helicity invariant problem

Magnetic helicity (for three-dimensional flows)

$$
H_{B}=\frac{1}{8 \pi^{3}} \int_{\mathbb{R}^{3}} \hat{\mathbf{B}} \cdot\left(\frac{-\imath}{k^{2}} \mathbf{k} \times \hat{\mathbf{B}}^{*}\right) d \mathbf{k}=\frac{1}{8 \pi^{3}} \int_{\mathbb{R}^{3}} \frac{1}{k^{2}}\left[\mathbf{B} \cdot\left(-\imath \mathbf{k} \times \hat{\mathbf{B}}^{*}\right)\right] d \mathbf{k} \sim \imath \sum_{n=-\infty}^{+\infty} \frac{1}{k_{n}} B_{n}(t) B_{n}^{*}(t) .
$$

Energy and magnetic helicity invariants turn out to be incompatible in GOY-type models.

It is necessary to either change the type of invariant, or change the structure of the model equations.

Changing an invariant
$H_{B} \sim \sum_{n=-\infty}^{+\infty}(-1)^{n} k_{n}^{-1}\left|B_{n}\right|^{2}$ instead of $\sum_{n=-\infty}^{+\infty} k_{n}^{-1} \operatorname{Re} B_{n} \operatorname{lm} B_{n}$ Sometimes they take a more general
view $\hat{H}_{B}^{\lambda}=\sum_{n=-\infty}^{+\infty}(-1)^{n} k_{n}^{-\lambda}\left|B_{n}\right|^{2}$
In such forms, «magnetic helicity» is compatible with the energy in GOY-type models.

Conservation of cross-helicity

$$
\frac{d H_{C}}{d t}=\sum_{n=-\infty}^{+\infty}\left(\frac{d U_{n}(t)}{d t} B_{n}^{*}(t)+\frac{d B_{n}^{*}(t)}{d t} U_{n}(t)+\frac{d U_{n}^{*}(t)}{d t} B_{n}(t)+\frac{d B_{n}(t)}{d t} U_{n}^{*}(t)\right)=0
$$

where

$$
\begin{aligned}
& \frac{d u_{n}}{d t}=\imath k_{n} \sum_{i, j=-\infty}^{+\infty}\left(S_{i j} U_{n+i}^{*} U_{n+j}^{*}+L_{i j} B_{n+i}^{*} B_{n+j}^{*}\right), \frac{d B_{n}}{d t}=\imath k_{n} \sum_{i, j=-\infty}^{+\infty}\left(W_{i j} U_{n+i}^{*} B_{n+j}^{*}\right), \\
& U_{n}(t)=x_{n}(t)+\imath y_{n}(t), \quad B_{n}(t)=g_{n}(t)+\imath h_{n}(t),
\end{aligned}
$$

It is clear that $\frac{d H_{C}}{d t}$ is a combination of trilinear forms from $x_{n}, y_{n}, h_{n}, g_{n}$.
We introduce the notations $n+i=1, n+j=m, q^{n} F_{i j}=F_{n / m}, q^{n} G_{i j}=G_{n / m}, q^{n} H_{i j}=H_{n / m}, q^{n} K_{i j}=K_{n / m}$ and calculate the monomials of the forms in Maple

```
> u[n]:=x[n]+I*y[n]: B[n]:=g[n]+I*h[n]:
    u[l]:=x[l]+I*y[l]: B[l]:=g[l]+I*h[l]:
    u[m]:=x[m]+I*y[m]: B [m]:=g[m]+I*h[m]:
    du[n]:=I*S[n,l,m] *conjugate (u[l]) *conjugate (u[m]) +I*I [n,l,m] *conjugate (B [l]) *conjugate
    (B[m]):
    dB[n]:=I*W[n,l,m] *conjugate (u[l]) *conjugate (B [m]):
    Hc:=simplify (du [n] *conjugate (B [n]) +u [n] *conjugate (dB [n]) +conjugate (du [n]) *B [n]+
    conjugate (u[n]) *dB[n]);
Hc:= 2S~
    +2L~~,l,m
    +2W~~
```

Five forms with species monomials $x_{n} x_{m} h_{l}, x_{n} y_{m} g_{l}, g_{n} g_{m} h_{l}, h_{n} h_{m} h_{l} n y_{n} y h_{m}$.
We reduce similar ones, taking into account permutations of indices, and equate the coefficients to zero.

Equations for coefficients dictated by invariants

Conditions for maintaining cross-helicity

$$
\begin{gathered}
L_{i, j}+L_{j, i}+2^{i} L_{-i, j-i}+2^{i} L_{j-i,-i}+2^{j} L_{i-j,-j}+2^{j} L_{-j, i-j}=0 \\
W_{i, j}+2^{j} S_{i-j,-j}+2^{i} W_{-i, j-i}+2^{j} S_{-j, i-j}=0
\end{gathered}
$$

$$
i, j=-\infty, \ldots,+\infty
$$

Two infinite groups of homogeneous linear equations.
Similar conditions were obtained for the remaining invariants

- energy $E-2$ groups of equations;
- magnetic helicity $H_{B}-2$ groups of equations;
- squared magnetic field $A^{2}-1$ group of equations.

Pair (i, j) is an identifier of an equation within one group.
Taking into account the restriction on long-range action, only a finite number of equations do not degenerate into identities.
The stellar region D is distinguished by the condition

$$
(|i| \leq P \wedge|j| \leq P) \vee(|i| \leq P \wedge|i-j| \leq P) \vee(|j| \leq P \wedge|i-j| \leq P),
$$

It identifies a finite subsystem of equations that do not necessarily degenerate into identities.

Implementation of spectral laws

Let $W(k) \sim k^{\mu}$ be a characteristic of a stationary turbulent flow. Then the total value of this characteristic in the n-th shell will be

$$
W_{n}=S\left(q^{n} \leq k \leq q^{n+1}\right)=\int_{q^{n}}^{q^{n+1}} W(k) d k \sim \int_{q^{n}}^{q^{n+1}} k^{\mu} d k \sim q^{n(\mu+1)}
$$

For example, Kolmogorov's law for energy $E(k) \sim k^{-5 / 3}$, i.e. $E_{n} \sim q^{(-2 / 3) n}$.
In the shell model, the energy in the n-th shell is $\left|U_{n}\right|^{2}+\left|B_{n}\right|^{2}$.
We require the existence of a stationary solution $U_{n}=\left|U_{0}\right| q^{-n / 3}+B_{n}=\left|B_{0}\right| q^{-n / 3}$.
Let's substitute the solution into the model equations and get

$$
\begin{aligned}
& \left|U_{0}\right|^{2} \sum_{i, j}\left(S_{i j}+Q_{i j}+R_{i j}\right) q^{-(i+j) / 3}+\left|B_{0}\right|^{2} \sum_{i, j}\left(L_{i j}+M_{i j}+N_{i j}\right) q^{-(i+j) / 3}=0 \\
& \sum_{i, j}\left(F_{i j}+G_{i j}+H_{i j}\right) q^{-(i+j) / 3}=0
\end{aligned}
$$

The existence of such stationary solutions does not guarantee their stability.

Shell interaction probabilities and coefficients

The interaction of the n-th, $(n+i)$-th and $(n+j)$ shells is possible if it is possible to construct a triangle from segments with lengths from the intervals $[1 ; q],\left[q^{i} ; q^{i+1}\right],\left[q^{j} ; q^{j+1}\right]$. Then the Monte Carlo method can be used to calculate the probabilities $p_{i j}$ of the interaction of waves from the shells.

On the left is the possibility of interaction, on the right is the probability of interaction for $q=(1+\sqrt{5}) / 2$.
The coefficients of nonlinear terms in the models can be considered as some measures of the interaction of the n-th, $(n+i)$-th and ($n+j$) shells. Therefore, it is reasonable to reconcile them with probabilities.

For example, let nonzero $L_{i j}=L_{i j}(\mathbf{s}), \mathbf{s}=\left[s_{1}, \ldots, s_{k}\right]^{\top}$ is a vector of free parameters. Reconciliation involves minimizing (in some sense) expressions

$$
\sum_{i, j}\left[\left|\frac{\left|S_{i j}(\mathbf{s})\right|-p_{i j}}{p_{i j}}\right|+\left|\frac{\left|L_{i j}(\mathbf{s})\right|-p_{i j}}{p_{i j}}\right|+\left|\frac{\left|W_{i j}(\mathbf{s})\right|-p_{i j}}{p_{i j}}\right|\right] \rightarrow \min
$$

And so on for all coefficients.

Computational experiments

Error calculation

$$
o s h=\sum_{i, j}\left|\frac{V E R_{i j}-\left|S_{i j}\right|}{V E R_{i j}}\right|+\left|\frac{V E R_{i j}-\left|L_{i j}\right|}{V E R_{i j}}\right|+\left|\frac{V E R_{i j}-\left|W_{i j}\right|}{V E R_{i j}}\right| .
$$

Ratios of the resulting interaction coefficients to the interaction probabilities on a logarithmic scale (2D).

Ratios of the resulting interaction coefficients to the interaction probabilities on a logarithmic scale (3D).

Conclusions

- Previously, we developed approaches using computer algebra that allow us to obtain parametric classes of models that provide models of the necessary conservation laws and spectral laws;
- One formal method for selecting free parameters has been developed, in which the interaction coefficients are maximally consistent with the interaction probabilities;
- A comprehensive technology for constructing models with numerical values of parameters has been obtained. The generated shell models can be directly studied further by numerical methods.

