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Relevance

If an electrically conducting environment (liquid, gas) moves in a weak external
magnetic field, then with a certain geometry of this movement a new magnetic
field can be generated in the environment, which is much greater than the
original one. This field, in turn, changes the nature of the motion of the
medium. A self-consistent dynamo system emerges..

This mechanism explains the existence of large-scale magnetic fields of space
objects - planets and their satellites, stars, galaxies.



Initial Equations

The magnetic field induction equation in the Ω region filled with a
conducting environment has the form

∂B
∂t

= ∇× (V × B) + νm∆B

∇B = 0
(1)

where V is the velocity field of the environment, and νm is the magnetic
viscosity, assumed by us to be constant.
Mean field theory introduces expansion of the velocity and magnetic
fields into mean fields U and B and fluctuations u and b.

∂B
∂t

= ∇× (U × B) +∇× (αB) + β∆B

∇B = 0
(2)

Here α is the α-effect tensor defined by the equality αB =< u × b >.



Initial Equations

The dimensionless form of the equation (2) with the preservation of the
designation of the fields will look like:

∂B
∂t

= ∇× (U × B) +∇× (α̃B) + Rm
−1∆B

∇B = 0
(3)

where Rm is the magnetic Reynolds number, α̃ is the dimensionless
α-effect tensor.
For the axisymmetric case under consideration, the equation (3) is split
into equations (4) for the toroidal and poloidal components of the
magnetic field.

∂BT

∂t
= rot(U × BP) + rot(α̃BP) + Rm

−1∆BT

∂BP

∂t
= rot(α̃BT ) + Rm

−1∆BP

(4)



Two-mode approximation

The spatial structure of the magnetic field is assumed to be very simple
and is represented by one poloidal and one toroidal mode:

B = BT + BP = BT (t)bT (r) + BP(t)bP(r) (5)

We substitute the expansion (5) into the induction equation for the
modes (4) and by the Galerkin method we obtain a dynamical system for
the amplitudes BT (t) and BP(t):

dBT

∂t
= ωBP + αTBP − ηTBT

dBP

∂t
= αPBT − ηPBP

(6)



System coefficients

ω =
1

∥bT∥
2

∫
Ω

[
∇× (U × bP)

]
bTdr > 0

ηT =
−Rm

−1

∥bT∥
2

∫
Ω

(∆bT )bTdr > 0

ηP =
−Rm

−1

∥bP∥
2

∫
Ω

(∆bP)bPdr > 0

αT =
1

∥bP∥
2

∫
Ω

(
∇× α̃bP

)
bTdr > 0

αP =
1

∥bT∥
2

∫
Ω

(
∇× α̃bT

)
bPdr > 0

∥bT∥
2
=

∫
Ω

[
bT (r)

]2
dr

∥bP∥
2
=

∫
Ω

[
bP(r)

]2
dr

(7)



Axisymmetric α2ω-dynamo model

We introduce a dynamic correction into the intensities αT , αP to provide
suppression and take the representation αP = α0 − w , αT = ξ(α0 − w) ,
where ξ is a dimensionless coefficient.
We get a system of the form:

dBT

∂t
= (ω + ξ(α0 − w))BP − ηTBT

dBP

∂t
= (α0 − w)BT − ηPBP

w = Q(BT ,BP)

(8)

In the system (8), we introduce the change of variables:

x1(t) = BT (t), x2(t) = sBP(t), x3(t) =
w

s
,

where: s = (ω + ξα)/ηT and D = sα/ηP . We also choose the
characteristic dissipation time of the poloidal component of the magnetic
field as the time scale, then ηP = 1.



α-effect suppression model
The dependence Q

(
BT ,BP

)
must be quadratic in the field components from

physical considerations.
Algebraic suppression (explored before):

α = α0 − Q(BT (t),BP(t)), (9)
where Q is a quadratic function.

Dynamic suppression (explored previously):

α = α0 − x3(t), (10)

where: Dx3 = Q(BT (t),BP(t)) and D is a differential operator.

Hereditary suppression (first proposed in work):

α = α0 − x3(t), (11)
where:

x3(t) =

∫ t

0
K(t − τ)Q(x1(τ), x2(τ)) dτ

The kernel of the suppression functional K(t) is a rather arbitrary function with
the following properties: K(t) ≥ 0 ∀t ≥ 0 and K(+∞) = 0.

Fixing the kernel K and the quadratic form Q determines a specific suppression
model.



Representation in the form of the Volterra equation

The model equation can be written in the form of the Volterra vector
equation:

x(t) = x(0) +
∫ t

0
K(t − τ)f(x(τ))dτ (12)

where

x(t) = [x1(t), x2(t), x3(t)]
T x(0) = [x1(0), x2(0), 0]

T

K(t−τ) =

1 0 0
0 1 0
0 0 K (t − τ)

 f(x(τ)) =



(
ηT − ξ

s2 x3(τ)
)
x2(τ)− ηT x1(τ),

(D − x3(τ))x1(τ)− x2(τ)

Q(x1(τ), x2(τ))


A theorem on the existence and uniqueness of a solution using the fixed
point principle was proved in [Kazakov,2022].



On the possibility of eliminating the integral term
For some classes of kernels, the integro-differential equations of the model are
equivalent to differential equations with an increase in the dimension of the
phase space of a dynamical system.
Theorem: If the core K(t) - differential equation solution

a0K
(n)(t) + a1K

(n−1)(t) + · · ·+ an−1K
′(t) + anK(t) = 0, ai − const,

(13)
then the integral representation

x3(t) =

∫ t

0
K(t − τ)Q(x1(τ), x2(τ)) dτ

is equivalent to a differential equation of order n:

a0
dnx3

dtn
+ a1

dn−1x3

dtn−1 + . . . anx3 =
n∑

k=0

an−k

k−1∑
m=0

K (m)(0)
dk−m−1

dtk−m−1Q(x1(t), x2(t))

for the function x3(t).

All such kernels have exponential asymptotics, i.e., for them we can talk about
the effective memory duration. If the kernel is not integrable on numerical
direct memory and is infinitely long, reduction to classical differential systems is
impossible.



Dynamic mode maps constructed using Lyapunov exponents

Рис.: Map of dynamic regimes for αω-dynamo systems with kernel
(a) K(t) = e−bt ; (b) K(t) = te−bt .



Algorithm for constructing maps of dynamic modes

Autocorrelation function

R(τ) =
N∑

t=0

x(t)x(t + τ) (14)

Discrete signal energy

E =
N∑

t=0

|x2(t)| (15)

We normalize the series R(τ) to the signal energy

L(τ) =
R(τ)

E
(16)



Algorithm for constructing maps of dynamic modes



Dynamic mode maps

Рис.: Map of dynamic regimes for αω-dynamo systems with kernel
(a) K(t) = e−bt ; (b) K(t) = te−bt .



Dynamic mode maps

Рис.: Map of dynamic regimes for αω-dynamo systems with kernel
(a) K(t) = 1

(t+1)α ; (b) K(t) = t
(t+1)α+1 .



Summary

1. An hereditary model of a two-mode dynamo is proposed, covering
the cases of axisymmetric large-scale α2-, αω- and α2ω-dynamo.

2. A theorem is proved on the possibility of eliminating the hereditary
term for the class of kernels with exponential asymptotics, i.e. about
the finiteness of memory in this case.

3. A theorem on the existence and uniqueness of solutions for systems
of this type is proved.

4. The model reproduces the dynamic regimes observed in real space
dynamo systems.

5. The constructed maps of dynamic regimes will help in the further
study of the properties of hereditary models of a two-mode dynamo.
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